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Executive Summary

This report is the conclusion of an effort of the Department of Physics and
Astronomy at San Jose State University (SJSU) for Lawrence Livermore National
Laboratory (LLNL). SJSU was tasked to assist with data analysis of recent
photonuclear measurement data taken at Duke University’s Free Electron Laser
Laboratory (FELL) using the High Intensity Gamma-ray Source (HIGS). Specifically,
photofission measurements of 235U near the fission barrier were performed at HIGS
and the analysis of key aspects of that data were performed by SJSU. The results
indicate that photofission of 23>U is isotropic in azimuthal angle but shows angular
dependence in the polar or laboratory angle. The conclusion is reached that the
angular distribution is caused by the polarization of the beam which is 100%
linearly polarized. Preliminary results using a novel method to extract the fission J-
states indicate the dominate fission channel is through /=9/2. Results also indicate
J=7/2 is the only other contributor to photofission.

Outline

This report is the convolution of reports drafted by the active participants
(i.e. students at SJSU). These reports are included in this overall report as
attachments. The reports discuss and detail the analysis of the participants for their
efforts, which include: 1.) analysis of neutron detector data taken from online
measurements (T. Slauter), 2.) analysis of flux measurement data taken offline (M.
Fong), and 3.) overall results of photofission and width determination (R. Espinoza).
The latter effort has transitioned into a thesis (M.S.) effort for Mr. Espinoza and the
reporting here on his component is preliminary. We welcome future readers to
contact SJSU for a copy of Mr. Espinoza’s thesis when it becomes available (~May
2013).



Appendix 1: Analysis of neutron data from 23°U photofission.
T. Slauter (written by M. Fong)

Introduction

At the High Intensity Gamma-ray Source (HIGS), a Laser-Compton Back-
Scattering Photon Source (LCBS) at Duke University, a gamma-ray beam, is created by
colliding electrons moving near the speed of light with a laser (produced with a Free
Electron Laser) with energy ~ eV aimed antiparallel to the electrons momentum. When
the incident laser photons interact with the electron bunch the photons up-scatters in
energy ranging from keV to MeV, a gamma-ray The gamma-ray beams are short pulses
(with a period of 179 ns) of light that are produced as either circular or linear
polarizations.

When a gamma-ray photon is absorbed by a nucleus the nucleus gains energy
approximately equal to the incident photon energy. The nucleus will undergo fission if
the excitation energy is at or near the fission barrier, where it will break apart into
daughter products. This process is called photofission. The purpose of this experiment is
to measure the prompt neutrons and determine their angular distributions and azimuthal
asymmetries from photofission in 235U.

The fission target is surrounded by an array of 18 detectors 57 cm equidistant
from the target. These detectors count the neutrons that are produced from photofission
by reading the amount of neutrons hitting the array. The gamma-ray beam pulsed is
providing a short window for the photofission process. Energy of the neutron is found

from the time of flight technique. The time difference between the pulse and the neutron

hit is be easily converted to neutron speed v = % where Ax = 57cm. The calculated



speed of the neutrons gives us E = %mvz; m= mass of the neutron and v = speed of the

neutron. Notice we have assumed non-relativistic momentum.

Twelve of the 18 detectors surrounding the target are placed at
6 = 55°,90° and 125° and at ¢ = 0°,90°,180°, and 270°; six detectors were placed at
0 = 72°,107° and 142° and at ¢ = 0° and 90°. The detector hit gives us the angle at
which that specific neutron broke up from the nucleus. The energy and the angle of
separation (angle in between the momentum of the incident gamma-ray beam and the
fission neutron’s momentum) give us the data we seek. For more experimental details see
thesis work by Ruben Espinoza (May 2013)

When a nucleus absorbs energy from the photon, it could disperse that energy in
many ways through the fission channel. The nucleus could fission into many fragments—
combinations of protons and neutrons. One fragment carries a varying fraction of the total
energy that the nucleus had before fission, where another fragment might carry another
energy different from the difference of the absorbed energy and the kinetic energy of the
other daughter. These fragments fly outward from the original nucleus and undergo
neutron evaporation. The story becomes much more complicated as the momentum
distribution of the neutrons are convolutions of a very random statistical set of processes.

Given the complexity of the resultant neutron energy from the fission process the
neutron energy measured is a continuum and is empirically modeled and is called the
Watt Spectrum. The Watt spectrum is given by W and the free-parameters are a and b.
The free-parameters are determined through a fitting procedure. The Watt Spectrum is

expressed by

1
W(a,b,E") = Ce %'sinh [(bE)Z]
Eq. 1: Analytical function Watt Spectrum. [1]
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W(a,b,E"), where C = (E — E’ is the secondary energy (energy of the fission

neutrons) and coefficients a and b depend on the isotope and vary weakly with incident
neutron energy (details taken from [1]).

Since the neutron dissociation channel is open, we must discriminate between
dissociated neutron and fission neutrons. The incident energies for these measurements
were near the separation threshold such that the dissociated neutrons were at or below ~1
MeV. Therefore, we could discriminate fission neutrons by fitting the neutron spectral
region above 1 MeV. From the fitting procedure we could extract the fit parameters and

determine the neutron count rate in each detector.
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Fig. 1: Watt spectrum for Uranium 235 at low and high energies. Figure taken from [1]
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Fig. 2: Example (Run 14, Energy 4.976 MeV detector 4) with Chi-Squared=2.9281.

Fig. 2 shows the hits on a detector four as a function of energy, where E >
1MeV. The curve is a fit to the data using Eq.1. The variables for the Watt Spectrum
equation are given from the fit. A x* test is applied to the fit and the variance of the
free variables are recorded.

The angular distribution is extracted from an integral array, where the values
are taken with respect to the detector location.

The variance in the free variables are

aa—a.,
Var(a) = ( )
Eq. 2: Variance in free parameter “a.”
An Integral of Degrees of Freedom (IntDof) in the free parameters is taken
by using the trapezoidal method with unit spacing. The combination of the variance

and integral of the degrees of freedom can determine the Integral Variance:
Integral Variance = Var(a) x IntDof (a)? + Var(b) = IntDof (b)?

Eq. 3: Integral variance. “a” and “b” are the free parameters.
The Integral Standard Deviation is the square root of the integral variance.




Appendix 2: Analysis of HIGS flux data

M. Fong

Photon Energy Analysis

Introduction

Laser-Compton Back-Scattering Photon Sources (LCBS) are important tools for photonuclear
physics. Photonuclear physics studies nuclear structure and nuclear reactions with photons. These
processes are studied and applied in a variety of fields such as astrophysics, nuclear reactors, etc... The
typical LCBS energies are about an MeV and higher. These energies are important for nuclear physics.

The spectral details of the LCBS must be known with high precision and accuracy in order to
study photonuclear processes. We present the analysis and techniques of measuring the spectral
features of the LCBS at Duke University, known as the High Intensity Gamma-ray Source (HIGS). The
analysis of the HIGS beam is crucial for experiments and is performed here.

A LCBS provides is partly an accelerator used to accelerate the speed of electrons to near the
speed of light. A laser with energy ~eV is aimed at a chosen angle to the electrons momentum. The
incident laser interacts with the electron bunch, backscatters and produces photons with energy ranging
from keV to MeV —depending on the electron and laser energies.

‘E/l

P

Fig. 1: Model of an eletron colliding with a photon. Incident photon of energy E,, is aimed at an electron at an angle
@ with energy E,-, producing a gamma ray of energy E,,. Figure taken from [1]

In the ideal case, the gamma spectrum from a LCBS would show a delta function according to
Eq. 1, where we would assume uniform momentum of the electron bunch. In practice, the electrons are
not moving with a unidirectional momentum because there are interactions within the electron bunch
and other effects from the accelerator’s electromagnetic optics. Therefore, we expect a spread of the
produced photon energies (E,,) are not all equal. Details of the spectral shape of the photon beam is

critical for photonuclear measurements.



£ = Eph(l — Bcosyp)
Y7 [(1 - Bcosb) + Epp (1 — cos(8 — ¢)]/E.-

Eq. 1: Equation representing the model above. [1]
In the case of the HIGS facility ¢ = =, 8 = 1,6 = 0, which is approximated by:

_ EB@
By = [Epp (D]/Ee- — Fe

Interactions with Matter

Photons interact with matter in a variety of ways, e.g. coherent or incoherent. Some of these
interactions occur are photoelectric absorption, Compton scattering, pair production, triplet production,
photodisintegration, etc... For the purposes of this paper, the reactions that are the most important are
Photoelectric Effect, Compton Scattering, and Pair Production. The importance of the interactions will
become more apparent later.

Photoelectric Effect:

incident photon

Fig. 2: Model of incident photon with orbiting electron. Incident photon energy E,, is absorbed by an atom. With enough

energy, the electron will escapes.

In a given material, there are electrons that orbit constituent atoms. The photoelectric effect
occurs when an incident photon is absorbed by the atom, knocking an electron out, provided the photon
has enough energy to overcome the work function energy (which is dependent on the atom). The
liberated electron will leave a hole whereby another electron will drop from its shell to fill the hole. This
situation produces a photoelectron and also an X-ray. The photoelectrons energy is E = E}, — @, where E
is the energy of the liberated electron, E,, is the energy of the incident photon, and @ is with work

function energy that is required for the electron to be expelled from the atom.



Compton Scattering:

incident photon

Fig. 3: Model of incident photon interacting with orbiting electron. The incident photon scatters with energy E’, while the
electron escapes the atom with energy E.

Compton scattering occurs when an incident gamma-ray interacts with a free or bound electron.
The photon is then scattered and the electron recoils, where the energy from the incident photon gives
some energy to the free electron. The energy of the recoiled electron is E = E}, — E’, where E,, is the

incident photon, and E’ is the energy of the scattered photon. An alternative way of writing it is:

E, (1 - cos)

_ mc?
E=Ey N E,(1— cos6)

1
mc?
Eq. 2: Energy of recoiled electron. Equation taken from [2]

m = rest mass of electron, 6 = deflected angle. This shows that there are two extremes, where 6
=0or 6 =m. At 8 = 0 the scattered photon gives no energy to the electron. When 6 = pi, the incident
photon is backscattered and the electron moves in the direction of incidence; a maximum energy
transfer between the photon and electron. The energy of the backscattered photon (8 = m) is:

' Ey

1+ 2E,/mc?
Eq. 3: Energy of backscattered photon. Equation taken from [2]

Compton scattering also occurs for bound electrons with the same kinematics but the
interaction cross-section is modified by atomic form factors which take into account the bound nature
of the electron.



Pair Production:

positron

incident photon

electron

Fig. 4: Model of incident photon near nucleus, producing positron and electron. Incident photon interacts with a nucleus,
gaining enough energy to create the pair; at least the total rest mass energy of the positron and electron.

If the photon has enough energy, the photon could turn into a electron-positron pair, where the
photon would have to have at least energy equal to 2mc?. This occurs when the photon is near the
nuclei of the constituent atoms, giving energies:

E_+E, =E,—2mc?
Eq. 4: Equation for pair production.
E_ = energy of electron, E, = energy of positron.
Cross Section:

These interactions occur with a certain probability, or “cross section,” which may be energy
dependent. The processes discussed above—Photoelectric absorption, Compton scattering, and pair
production cross sections, depend on incident photon energy.
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Fig. 5: Cross section with different elements; e.g. C (Carbon), Pb (Lead). Lead cross section is there for comparison (Larger Z).

oy is the total cross section. Figure taken from [3]

The total cross-section is the sum of partial cross-sections, e.g. g;, = total cross section, which for
our discussion is made of: g, .. = photoelectric effect, o.ompron = COmpton scattering cross section,
Opair = Pair production cross sections (see Fig. 5 and Eq. 5). The cross section vs. energy plot (in Fig. 5)
shows that with increasing energies, the more likely one interaction with matter will dominate over the
others. For example, with energies E,, > 1MeV, the plot shows that pair production grows to be the most
dominant.

Oy (EV) = Up.e.(Ey) + Ocompton (Ey) + Upair(Ey)

Eq. 5: Equation for the total cross section at a particular energy.

Detector Response

A detector measures energy of a particle by measuring its energy deposition. In some detectors
energy deposition causes electrons to be liberated and the electrons are collected with an electric field
onto an anode. Charge sensitive electronics attached to the anode collect, amplify, and shape a signal
to be analyzed and recorded. For our measurements we use a High Purity Germanium (HPGe) detector
that works according to this approach. As the incident photon interacts with the matter of the detector,
interactions will occur. Ideally, when the interactions occur, energy is absorbed by the detector and is
equal to that of the energy of the incident photon. However, in practice not all energy is deposited into
the crystal due to escaping secondaries from the detector.



The HPGe Detector:

HPGe (High Purity Germanium) detectors take advantage of its semiconductor properties that
allow for high resolution gamma-ray spectroscopy (Counts of discrete energy levels). The crystal lattice
of the ultrapure geranium material sets up an energy gap (or band gap) between the valence and
conduction bands, low enough for very sensitive energy readings. The electrons naturally are bound to
the lower, valence band. With enough incident energy the electrons can absorb that energy and jump to
the conduction band; where the electrons in this band are able to move freely throughout the crystal.
The effected electron in that case has left a hole in the valence band. The combination of the two is an
electron-hole pair. These moving electrons give us an opportunity to read the electrical conductivity of
the geranium.

To obtain a high-resolution detector, small band gaps are important. Having small band gaps
allow the detector to distinguish between small energy differences. Since the energy gap is small the
detector is sensitive to temperature since electrons could gain energy from the environments heat. So
using semiconductors with small band gaps, the material must be cooled in order for it to yield any
useful readings; maintained at 77 K by using liquid nitrogen. As a result the HPGe detector has 2 keV
resolution.

Escaping Events:

If no energy escapes, the record energy will be equal to the incident photon energy. Interactions
near the edge of the detector sometimes result in escaping energies:

In the case of the photoelectric effect, when an electron absorbs energy from a photon,
provided that it is enough energy to overcome the work function of the material, the electron is ejected.
The hole left from the ejected electron is filled by another electron; producing an X-ray (or Auger
electron) with energy equivalent to the energy lost by the electron dropping to a lower state. If the
photoelectron has enough energy to overcome the electric field of the detector, it may escape the
detector, thus the escaping electron’s energy will not be recorded, producing a lower energy reading.

For Compton scattering, the energy of the recoiled electron or scattered photon depends on the
angle of incidence. The range of 0 < 8 < m produces a continuum of energies that can be transferred to
the electron. This is called the Compton continuum, where 6 = 7 is the Compton edge. This continuum
will show up in the spectrum. If this occurs near the edge of the detector and the energy escapes, it will
produce a lower energy reading.

In pair production, when the photon interacts with the nucleus of an atom, the photon could
produce a positron electron pair. If the positron annihilates with an electron, two 0.511 MeV photons
will be produced. If one of these escapes the detector, it will leave a lower energy reading 0.511 MeV
less than the incident photon. If two escape, it will result in 1.022 MeV less energy than the incident
photon. Both will produce a lower energy reading (which we will later refer to as the single and double
escape peaks).



When photoelectric effect, Compton scattering, and pair production would have energies
escaping the detector, the detector would read a lower energy deposition than the incident photon

energy. The escaping electrons and photons are due to these events occurring near the edge of the
detector.

detector

photoelectrie effect escape

Compton scattering eseaping gamima Tay

P
incident photon

pair production

pair production ¢+ single—escape

double-escape

Fig. 5: Incident photon interactions with matter near the edges of the detector, showing escaping energies that result in lower
energy deposition.

The full and partial energy depositions ubiquitous for all detector types, (c.f. Fig. 6).
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Fig. 6: The pulse-height spectra of an average-sized detector. The Full-energy peak is the peak of interest, being the energy of

the incident photon beam. The single-escape peak is due to myc? = 0.511 MeV escaping photon. The double-escape peak is

due to two escaping photons 2mgc? = 1.022 MeV. Between the single-escape peak and the full-energy peak is the Compton
edge, where preceding the edge is the Compton continuum. Figure taken from [2]

Analysis determines the incident energies would be the full-energy peak furthest to the right
(see Fig. 6). In some cases for E < 2mc?, the spectrum only contains a Compton continuum, since the
only escape events possible in the energy range are Compton (left Fig. 6). For E > 2mc?, the pair-
production escape events become prominent and are seen in Fig. 6 (right).

However, in the spectra there are (generally) two other peaks to the left of it, which is due to
the escaping electrons or gamma rays from the detector. The energies that leave the detector yields
lower energy readings (or counts) than the incident photon beam of interest.

Analysis

The energies of the HIGS beam for the these measurements are >> 2mc?, which allows for
single and double escape events. The pair production cross section dwarfs the Compton effect cross
section, where the Compton continuum is too small to see with respect to our energy scales.

Figure 6 shows the spectral shape of the HIGS beam with the HPGe response in comparison to
an ideal HPGe detector.
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Fig. 7: The blue is a typical spectral shape of the HIGS beam with the HPGe response overlaid with an ideal HPGe detector pulse-
height spectra. Overlaid with [2].

Due to the practicalities discussed previously, the produced beam from HIGS is not a delta
function, but is a broad Gaussian curve. In Fig. 7 the double escape, single escape, and full energy peaks
can easily be identified. A little more difficult to see perhaps, is the Compton edge in between the single
escape and full energy peak. What should be a deeper valley in between the peaks is muddled with the
Compton edge, the continuum preceding it, and also the overlap of the single escape peak and the full
energy peak.



Compton continuum

Fig. 8: Run2235 with “Gaussian fits” over the single escape and full energy peak. Overlap of the two Gaussians as well as the
Compton continuum and edge contribute to the higher counts in energy in between the single escape and full energy peaks.

Flg. 8 shows the Compton continuum, Compton edge, single escape and full energy peak
overlaps, contributing to the higher counts in energy between the two peaks in dark grey. Because there
are overlaps between the single escape peak and the full-energy peak, this must be taken into
consideration whilst analyzing the data.



The data:

The gamma spectrum contains background radiation known as Naturally Occurring Radioactive

Material (NORM). NORM is present in the material of the detector, the equipment involved in the set

up, terrestrial radiation, laboratory materials, far-away structures, environment (air) the detector is in,

etc.... NORM includes radioactive decays from 232Th, and 40K.
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Fig. 9: A typical spectral shape of the HIGS beam with the HPGe response with a Gaussian fit over the full energy peak. On the

left is background radiation due to 40K and 2°®T1. (Run number 2255)

The HIGS beam with the HPGe response spectrum (Fig. 9) shows background radiation on the
left with energies ~1461 keV for *°K and ~2165 keV for 2°T1. The NORM provides an online calibration
source. That is to say, the difference between the two energies and their placements on the spectrum

can be used to scale the bin numbers with energy. Using a linear analysis while x = bin number,
E = energy, m = 2—? E = mx + b. Here AE = 704 keV and Ax = 230.3, so m = 3.05 keV. Now the

energies of the peaks can be determined with E = (3.05 keV) * x + b.

Approximating the bin number of the full energy and single escape peaks, we have
x(full energy peak) = 1614, x(single escape peak) = 1499, Ax = 115. We know that between
the single escape and full energy peak AE = 511 keV. AE = (3.05 keV)Ax + b shows that b =
511 keV — (3.05 kev) = 115 = 161 keV. Using the values for m and b, and the equation E =



(3.05 keV) = x + (161 keV), we can easily determine the value of the peak energy in units that are
useful for nuclear measurements.

As stated before, our interest is the full energy peak and its shape. In this experiment the most
important energy to know is the incident energy; or centroid of the full energy peak. To obtain the
centroid a Gaussian is fitted over the full energy peak (Fig. 10).

fitted curve

800 escape
peak full
700+ ¢ energy
double peak

600 <=
500
400
300
200

100

1 1
1500 1550 1600 1650

1250 1300 1350 1400 1440

Fig. 10: Zoomed about the double escape, single escape, and full energy peaks. The two red marks are the lower and upper
bound this Gaussian fit represents. (run 2304).

Fig. 10 is a typical example of the spectra produced from our HPGe detector. The peak of
interest is the full energy peak; furthest to the right. The HIGS produces a Gaussian peak shape, which
implies a Gaussian fit (red curve in Fig. 10).

To obtain the full energy peak (which allows us to get the energy) we must find the Gaussian
that best represents it. In choosing the lower and upper bounds of the Gaussian fit, one must take into
consideration the contribution of the Compton continuum, Compton edge, and single escape peak to
the full energy peak. The lower bound is chosen near the top of the full energy peak apex to avoid the
overlap. The upper bound is easy to choose—as long as it is chosen near the base of the peak (This will
be discussed later).

The fit relies heavily on the low band channel. If the low band channel is too low, then the
Gaussian would misestimate the contribution of the lower energy counts into the full peak. If the low



band channel is chosen after the apex of the full energy peak, that Gaussian would represent a different
fit (with a much higher apex) than the data provided (Figure 11).
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Fig. 11: Low bound chosen after the apex of the full-energy peak. “Gaussian fit” that does not represent the data.

Fig. 11 shows that if the high band channel is chosen too close to the peak, it will also result in a
poor Gaussian fit. When the high band channel is chosen near the base of full-energy peak, the Gaussian
varies little. This is because there are enough data points preceding the high band channel to contribute
to a more accurate Gaussian fit.

When the lower and upper bound are chosen about the full energy peak, the specified spectra is
fitted with the Gaussian:
,[x;”]
f(x) = Ae oVZ
Eq. 6: The height, centroid, and width are given by A, i, and o respectively.
X2 test:

The Chi-squared (x% Chi2) test is an important tool in data analysis. The Chi-squared test
measures the precision of the fit to a model, in this case a Gaussian peak shape. Important parameters
for this model are: height, centroid, and width of the Gaussian and the chosen boundaries.



The boundaries can be graded by way of the Chi-squared test, and we do that by varying the
lower and upper bounds until the best fit is found. Using MATLab, a script was written (Appendix) to
make this prescription efficient, since there were many data sets to apply to. The approach is
accomplished by keeping the lower bound constant while varying the upper bound, fitting and doing the
x? test with each attempt. Then it moves the lower bound up one channel and sweeps the same upper
boundary range. The fit and x? test is done, then repeats.
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Fig. 12: LoBndChnl# is the lower bound channel numbers, HiBndChnl# is the high bound channel numbers, and the values of x*
are color coded with respect to the color spectrum on the right. (Run 2211)

The result is a x? 3D contour (Fig. 12) with dependencies on the lower and upper channel

numbers. The upper limit for the low band channel (LoBndCnl#) is chosen at the apex of the full energy
peak.



5,5

ChiZval

1
1780

1655 1BB0 1BB5 1G70 1675 1BBO 1685 1890 'OU Limichom

LoBndChnk#

Fig. 13: This is a side view of the x> 3D contour. The high channel limits hardly varies the accuracy of the Gaussian fit; as most 3D
X2 contours show. This is a Chi2 3D contour with only the useful data (extracted lower bound data points above the full-energy
peak apex).

Clearly the results indicate that there is a strong dependence on the lower channel, but virtually
none on the upper channel. This is expected because of the convolution of the other spectral features
discussed previously. The upper channel is not as sensitive because the model (Gaussian) in this region
is a good representation.

Results

Tab. 1 shows the important values representing the best fit for the corresponding run number.
It’s significant figures has also been reduced in order to fit the table and the (+/-) is the average of the
upper and lower bound of the uncertainties. The complete table will be in the Apendix.

Minimum
High Low High chi2
channel | Value Value Value A A(+/-) u (keV) Wu(+/-) o (keV)

o(+/-)

2000 | 1443.03 | 1511.4 | 3.4119575 | 2321.792 | 19.24759 | 4573.621 | 162.5591 | 217.0213

162.1038

1735 | 1211.08 | 1295.72 | 1.7148327 | 1056.078 | 19.43342 | 3846.094 | 163.1666 | 206.9697

162.1663

1749 | 1227.35 | 1307.11 | 2.2386795 | 890.2631 | 9.859992 | 3913.265 | 162.8102 | 209.8015

162.2642

1771 | 1255.84 | 1325.02 | 1.8278923 | 915.7201 | 17.32144 | 3991.617 | 163.9412 | 212.0618

162.811

1814 1277 | 1360.02 | 3.5207375 | 1902.083 | 15.80878 | 4064.54 | 162.4681 | 213.9831

162.0114
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2.3338503

897.7181

8.154014

4199.696

162.5836

213.4531

162.1866

1961

5563

6110.98

2.3829376

692.6268

6.196413

17171.14

167.5587

379.445

165.6263

1927

1364.9

1451.99

1.7918749

911.44

11.10232

4339.072

162.6454

212.7927

162.2199

2661

1395.02

2049.39

2.3370577

943.1725

4.380594

4423.79

161.8783

218.2279

161.5939

1943

1390.13

1465.01

1.0111984

175.7773

3.761086

4410.54

170.4084

222.4258

165.2637

1987

1425.13

1500.82

1.7670554

312.0255

6.753082

4515.983

164.7599

213.1639

163.5834

1982

1429.2

1496.75

3.3667477

939.0127

24.92703

4516.989

164.9913

213.1889

163.3468

2049

1464.2

1551.28

1.9611013

897.05

10.03602

4635.388

162.9621

213.6096

162.3511

2050

1474.78

1552.1

1.8216976

819.4194

11.34876

4667.062

163.3441

211.8509

162.6081

2065

1475.59

1564.31

2.9545709

955.6979

15.51105

4663.265

163.6278

213.1016

162.6486

2082

1497.57

1578.14

1.8803308

853.0467

9.192597

4739.094

162.9596

215.2066

162.3788

2101

1523.61

1593.61

2.1649903

836.2175

13.72908

4811.921

163.6718

211.7885

162.7306

2153

1548.03

1635.93

3.1840985

1141.535

14.07501

4886.097

163.1259

215.2192

162.3653

2156

1574.07

1638.37

1.4243591

1144.603

14.85208

4968.979

163.3573

216.2233

162.582

2167

6504.31

6803.52

1.0222967

270.79

4.884035

20025.5

183.8057

404.633

171.4908

2201

6537.93

6917.82

1.2106295

201.7442

5.772273

20109.67

181.5886

392.5793

173.916

2233

1597.67

1701.04

3.0923918

796.8485

8.285625

5044.281

163.0249

219.2407

162.4071

2213

1613.95

1684.76

1.5164416

836.8044

12.4688

5087.509

163.6883

217.6547

162.7295

2220

1620.46

1690.46

1.6694015

863.9312

10.64062

5112.047

163.3942

219.6683

162.6276

2239

1633.49

1705.92

1.9587206

874.0736

12.30704

5150.721

163.6958

219.232

162.821

2260

1650.58

1723.01

1.4650203

747.3622

12.07659

5197.106

163.9185

219.2801

162.8265

2285

1666.04

1743.36

1.5956451

688.5157

8.534645

5254.887

163.5154

221.4403

162.7828

2310

1694.53

1763.71

1.467797

687.2551

8.437114

5337.867

163.3692

219.2463

162.6107

2609

1932.19

2007.06

2.0052331

983.8416

8.898021

6076.06

162.7942

222.9502

162.4115

2629

1932.19

2023.34

1.8240443

232.1228

4.008499

6076.55

164.6385

226.257

163.8382

1770

1280.26

1324.21

2.0054683

938.3266

12.82792

4079.521

163.1413

207.1998

162.599

1782

1288.39

1333.97

3.1715562

727.8004

14.38951

4096.598

164.0027

206.8659

163.0287

1782

1289.21

1333.97

2.0463629

849.3187

15.11676

4097.356

163.7664

208.8204

162.816

1784

1294.91

1335.6

1.666154

713.8612

15.09307

4118.701

164.3818

207.8911

163.3835

1797

1306.3

1346.18

0.9670807

749.0828

13.18891

4151.633

163.8027

208.1157

162.9188

1809

5428.52

5599.98

0.9152849

467.1798

15.41243

16711.5

179.7112

352.2271

172.245

1803

5408.35

5579.8

0.9306086

220.0064

8.852445

16670.03

188.4489

371.0852

178.7326

1813

1310.37

1359.2

1.2974555

995.0014

11.41986

4171.188

162.9006

210.3812

162.4241

1815

1316.88

1360.83

1.0818884

354.0062

6.988595

4192.293

164.2321

209.5834

163.4929

1819

1317.7

1364.09

1.7979037

415.2706

7.873056

4198.496

163.8552

210.1598

163.3618

1821

1325.02

1365.71

1.2008604

467.3378

12.60013

4207.55

165.174

207.6075

163.792

1863

1325.02

1399.9

1.7675681

236.29

4.471678

4218.183

164.0786

210.8035

163.3703

1825

1326.65

1368.97

2.0627801

918.3703

15.6131

4209.743

163.6168

209.328

162.6728




1866

1328.28

1402.34

2.3840424

400.8095

8.436659

4219.179

164.4174

210.021

163.3196

1830

1332.35

1373.04

1.1463348

820.8889

16.77622

4230.594

164.3434

209.6303

163.2599

1879

1333.16

1412.92

1.5500702

407.4971

6.260835

4240.147

163.4931

209.6283

162.8522

1844

1336.41

1384.43

1.6617188

915.1027

9.688519

4249.779

162.7369

209.7319

162.2889

1885

1344.55

1417.8

2.7891933

783.4

10.676

4270.943

163.2692

210.7119

162.5855

1992

1454.43

1504.89

1.6612766

734.5969

14.41488

4603.966

164.2022

210.1674

163.1766

1997

1457.68

1508.96

2.129527

783.9767

11.77376

4616.989

163.5815

212.0011

162.8259

2006

1462.57

1516.29

1.6262183

832.9869

12.97046

4632.131

163.6931

212.3924

162.9076

2020

1479.66

1527.68

1.0698661

870.9946

21.62191

4674.096

164.7085

210.0416

163.2833

2033

1482.92

1538.26

1.6415401

730.5441

14.1605

4687.574

164.2356

213.2827

163.0865

2043

1482.1

1546.4

0.9649491

837.4563

7.725294

4702.658

162.8649

210.4398

162.0922

2071

1492.68

1569.19

1.8590094

856.3637

9.107319

4721.895

162.8881

214.4224

162.2911

2108

1507.33

1599.3

2.6799616

1003.505

13.3617

4762.149

163.1189

210.6718

162.3722

2107

1515.47

1598.49

2.0572857

858.7974

14.06953

4785.497

163.5485

210.5148

162.6159

2092

1518.73

1586.28

1.6562133

907.8123

11.39615

4811.894

163.1104

213.7112

162.6667

2092

1525.24

1586.28

1.0597939

847.7468

10.08789

4823.524

163.122

214.1188

162.4995

2108

1530.94

1599.3

1.3251565

614.1957

8.289967

4836.094

163.3035

213.2992

162.5268

2122

6319.41

6652.23

2.1729623

867.5644

10.42519

19473.78

170.2277

391.1829

167.3686

2134

6332.86

6692.58

1.6819028

474.409

6.410035

19533.82

171.0998

384.5205

168.3863

2142

1535.82

1626.97

2.2938494

808.6122

7.514885

4863.366

162.6353

215.2921

162.2706

2141

1539.07

1626.16

1.8092482

901.5844

9.734724

4864.615

162.9697

215.6993

162.3923

2167

1551.28

1647.32

2.3237056

824.3929

8.363653

4901.681

162.7928

213.8525

162.2453

2215

1551.28

1686.39

3.3258058

1364.646

8.857314

4909.904

162.1307

214.3286

161.8707

2162

1559.42

1643.25

1.9862846

965.6668

9.937658

4925.448

162.8134

213.9973

162.2412

2175

1568.37

1653.83

2.0775509

1026.332

16.0393

4945.634

163.5154

213.2721

162.5646

2196

1581.4

1670.93

2.2784381

1136.831

18.77134

4983.787

163.6249

213.8801

162.5981

2337

7011.95

7375.03

1.7182393

657.3505

10.13421

21573.31

172.0583

379.6636

168.4154

2345

6985.06

7401.93

2.4407586

909.282

9.000818

21522.41

168.4799

386.5442

166.4878

2342

1690.46

1789.75

2.158251

792.6502

7.685197

5331.771

162.8395

217.7354

162.3579

2385

7035.48

7536.4

1.4102505

219.5052

6.411606

21618.18

180.6477

384.0682

172.9944

2363

1701.04

1806.85

3.3510127

840.0067

12.0042

5354.812

163.7053

219.5166

162.7729

2379

1706.74

1819.87

2.3855709

701.4356

9.433337

5371.219

163.5053

219.1313

162.6232

2364

1707.55

1807.66

2.4490881

774.9467

10.35106

5370.396

163.4585

220.8234

162.5282

2385

1711.62

1824.75

2.6368922

927.795

11.2573

5388.01

163.2615

218.0264

162.5026

1827

1285.95

1370.6

1.7227422

370.0848

7.348462

4086.034

163.9693

208.087

162.9041

1949

1286.77

1469.89

2.2145741

885.1889

5.174272

4098.902

161.9018

208.1015

161.6865

1847

1316.07

1386.88

1.138895

400.039

7.236535

4182.541

163.7992

207.3807

162.9307

1864

1319.32

1400.71

1.1462839

264.7293

4.99886

4191.846

164.0641

209.9562

163.1577

2403

1718.95

1839.4

2.2269683

682.4788

5.477898

5417.985

162.5702

219.2997

162.1434

2367

1727.9

1810.1

1.6255293

733.5006

11.02491

5436.998

163.922

221.043

162.9169

2370

1718.95

1812.54

1.8018761

678.1112

6.693037

5425.41

162.9917

223.2186

162.5284




2405

1734.41

1841.03

2.6307757

790.8748

13.87567

5450.808

164.1569

220.6607

162.9276

2405

1731.15

1841.03

2.0973445

788.2369

6.099194

5466.799

162.4974

224.1971

162.2219

2393

1741.73

1831.26

1.7837324

891.6873

26.0986

5493.461

165.6606

220.6419

163.336

2393

1748.25

1831.26

1.6183899

697.4759

9.371411

5503.358

163.6713

220.5575

162.8469

2415

7233.83

7637.25

1.3775662

489.347

6.002381

22289.36

171.4909

416.3217

168.697

2417

1753.94

1850.8

2.1198674

989.9076

27.99402

5532.465

165.8213

216.8866

163.5838

2419

1766.96

1852.42

1.6776911

703.3221

12.68648

5552.843

164.1959

217.5506

163.0212

2385

1771.85

1824.75

0.9458545

698.3264

24.37396

5553.322

166.0248

218.2338

163.672

2400

1772.66

1836.96

0.9664937

800.6595

10.23233

5576.591

163.4836

219.4827

162.6966

2432

1780.8

1863

1.4128903

738.7912

10.02252

5599.592

163.4928

216.8721

162.6722

2503

1783.24

1920.79

2.4361993

779.4376

7.722348

5610.823

162.9942

221.1603

162.3887

2468

1789.75

1892.3

1.9270269

702.5702

8.132222

5632.783

163.3929

222.547

162.702

2457

1799.52

1883.35

2.2760606

1098.071

15.31567

5651.511

163.6186

221.58

162.6387

2497

1799.52

1915.91

2.0930779

595.7596

7.282666

5659.809

163.6722

226.8321

162.8246

2508

1797.89

1924.86

2.294495

630.3762

6.137695

5670.976

163.0461

227.371

162.6292

2513

1793.01

1928.93

3.5780117

893.1295

7.090867

5663.125

162.489

228.3948

162.2875

2657

1928.93

2046.13

2.3800143

746.1862

10.09736

6072.701

163.9516

226.1933

162.6395

2918

2180.42

2258.56

1.1615721

431.9664

5.526991

6832.962

164.0163

232.4297

163.2912

2924

2174.73

2263.44

1.9150672

723.4275

7.749573

6825.791

163.3992

235.4767

162.9828

Tab

@

. 1: List of the important values of the best fit for each run number that is not noise or an empty data sheet.
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Appendix
MATLab code:

%% Gaussian fit and Chi2 test script with explanation
%% clear MATLab

clear all
close all

oe

% to run all run numbers that are not noise or empty data sheets, include
this seection by taking out the percent signs in front of code in this
section as well as the bottom of this page in front of "end" (line 262)
beware! it will take a long time to run through all of the run numbers

load sheet.txt;

ASD = sheet (ZXC,2);

if ASD > 0

run number=2195 + ZXC - 1;

a0 o° d° o o o

o

%% input the run number that you are interested in (if doing all run numbers
% then put a percent sign in front of this run_number)
run_number=2208;

%% load the sheet with chosen-by-hand lower and upper channel numbers
load sheet.txt;

% the first row represents the lowest run number (value 2195)
a=run_number-2194;
% assign variables to lower and upper channels respectively
x_lo=sheet (a,4);
x_hi=sheet(a, 6);

%% extracts specified spectra under "new"
file=sprintf ('run%d.txt', run_number) ;
new=importdata (file) ;

% the total channel numbers for every spectra is 4096
maximum=4096;

%% selecting the value for the apex of the full energy peak
T=new (x_lo+maximum:x_ hi+maximum) ;
[mx, indx]=max (T) ;



%% gaussian fit and Chi2 test

oe

o

H o°

20);

npn

Every lower channel number, "A", sweeps out the specified channel numbers
These sweeps range under "P", and "U". Make sure they range from 1
to the same number.
or P=1:30

for U=1:30

o

the number of channels swept by P and U should be the same value
as the value being subtracted in A so the analysis won't overlap
into the unusable data

A=indx+x_lo+P-30;

B=x_hi+U+00;

ae

oe

% takes specified range from the spectra
K=new (A:B) ;

o

add maximum to extract the full-energy peak (blue on 2D plots)
L=new (A+maximum:B+maximum) ;

% transverse matrices for Gaussian fit
X=K"';
Y=L"';

% gaussian fit specified under "cf "
gaussfit= fittype('gaussl');

cf =fit (X,Y,gaussfit);

% add decimal places for accuracy
format long

% coefficient values for Gaussian fit
coeff = coeffvalues(cf );
al=coeff(1,1);

bl=coeff(1,2);

cl=coeff (1,3);

oo

fit with coefficient values
y=al*exp (- ((X-bl)/cl)."2);
for j=1l:length(Y)
1f(Y(3)<=1)
Y(3)=1;
end
end

o

% coefficient values being saved for every run
coefficients=sprintf ('%d coeffval.txt',run number) ;
dlmwrite (coefficients,coeff, '-append', 'newline', 'pc', 'precision',

o

% Chi2 test; DOF is degrees of freedom
Chisquare = sum(((Y-y))."2./Y);



DOF = length(Y)+2;
7 = Chisquare/DOF;

oo

Chi2 values being saved for every run; F = [A B Z] is saved, where
"A" and "B" are the lower and higher channel number, while Z is
the corresponding Chi2 value.

filesaved=sprintf ('%d.txt', run number) ;

F=[A B 2]

dlmwrite (filesaved, F, '-append', 'newline', 'pc', 'precision', 20);
end

o

o

end

%% Chi2 3D contour

% open Chi2 values with respect to lower and upper channel numbers
new2=importdata (filesaved) ;

o

% make grid range from varying values of lower and upper channel numbers

rangeX=(min(new2 (:,1))) : (max (new2(:,1)));
rangeY=(min (new2 (:,2))) : (max (new2(:,2)));
[%i,yi] = meshgrid(rangeX, rangeY) ;

% overlay Chi2 values with grid
zi=griddata (new2 (:,1),new2(:,2),new2(:,3),xi,yi);
% make figure

figure;

hold on;

surf (xi,yi,zi);

ZZ=surf (xi,yi,zi);

colorbar;

xlabel ('LoBndChnl#") ;

ylabel ('HiBndChnl#");

zlabel ('Chi2val');

555555555 5555555%5%55%5%5%5%55%5%5%5555%5%5%55%5%5%5%%%5%5%%5%%%5%%5%%5%%%
%% n this is optional to display a "wall" showing the useful low channel
11
%%% making useful channel upper limit by highlighting the apex of the full
$%% energy peak. T is the full energy peak
T=new (x_ lo+maximum:x hi+maximum) ;

assign apex channel number to "indx" and make wall so you can see on
%$%% Chi2 3D contour

[mx, indx]=max (T) ;

UsflChanLim=indx+x_lo;

n=size(xi);

nl=n(1l,1);

m=repmat (UsflChanLim,nl,nl);

put limit on contour
t3(m,yi,zi);

hold off;



%%% extract up to useful channel upper limit
Ql=(xi(1,:))
[ROW,COL] =

o

% find minimum Chi2 value

Q3=min (Q2) ;

MinChi2Val=min (Q3);

[ROW2,COL2]= find(zi==MinChi2val) ;

% find lower and higher channels with respect to minimum Chi2 value
XloChan=xi (1,COL2) ;

XhiChan=yi (ROW2, 1) ;

o

find corresponding values to the lower and higher channels with respect
to the minimum Chi2 value

XloVal=new (XloChan,1);

XhivVal=new (XhiChan, 1) ;

oe

o

> save Chi2 3D contour with useful channel upper limit
myfig = sprintf ('%d 3Dchi2.fig',run_number) ;
saveas (gca,myfig, 'fig');

%% Plot the Gaussian fit with respect to the minimum Chi2 value over the
spectrum

% make variables to represent whole spectrum
Xx=new(:,1);

Yy=new (:,2);

% make variables ranging from the lower to higher channel limits specified
% from the minimum Chi2 value

XXx=new (XloChan:XhiChan, 1) ;

YYy=new (XloChan:XhiChan, 2) ;

% make figure
figure;

hold on

% plot the two; they will overlap perfectly
plot (Xx,Yy);
plot (XXx,YYy) ;

% gaussian fit only over the specified channels from minimum Chi2 value
cf 1 = fit (XXx,YYy,gaussfit);

o

% plot the gaussian over spectrum
plot(cf 1);
hold off



o

% save full spectrum with gaussian fit
myfigl = sprintf('sd cftool.fig',run_number) ;
saveas (gca,myfigl, 'fig');

% coefficient 95% confident bounds (you can change confidence bounds 0 - 1)
CB = confint(cf 1,.95);

% creating variables for (-/+) confidence bounds
a2 = CB(1,1);
a3 = CB(2,1);
b2 = CB(1,2);
b3 = CB(2,2);
c2 = CB(1,3);
c3 CB(2,3);

a4 = a2 - al;
a5 = a3 - al;
b4 = b2 - bl;
b5 = b3 - bl;
c4d = c2 - cl;
c5 = c3 - cl;

o

55 Display

% respectively: the gaussian fit, lower and higher channels and then values
% corresponding to the minimum Chi2 value, and minimum Chi2 value

cf 1

XloChan=xi (1,COL2)

XhiChan=yi (ROW2, 1)

XloVal=new (XloChan,1)

XhivVal=new (XhiChan, 1)

MinChi2Val=min (Q3)

%% saving values

% BestFit file lists optimum values corresponding to the minimum Chi2 value
% listed as: run_number XloChan XhiChan XloVal XhiVval MinChi2vVal
BestFitVal=[run_number XloChan XhiChan XloVal XhiVal MinChi2val];

BestFit=sprintf ('%d BestFit.txt', run number);
dlmwrite (BestFit,BestFitval, '-append', 'newline', 'pc', 'precision', 20);

AllBestFit=sprintf ('AllBestFit.txt");
dlmwrite (Al1lBestFit,BestFitvVal, '-append', 'newline', 'pc', 'precision', 20);

% BestCoeff file lists the coefficients of the best gaussian fit

listed as: run number al (-/+) bl (-/+) cl (-/+); or A = al, mu = bl, sigma
cl/ (sqrt2)

BestCoeffVal=[run_number al a4 a5 bl b4 b5 cl c4 c5];
BestCoeff=sprintf ('%d BestCoeff.txt',run_number);

dlmwrite (BestCoeff,BestCoeffval, '-append', 'newline', 'pc', 'precision',
20);

o0

AllBestCoeff=sprintf ('BestCoeff.txt');



dlmwrite (AllBestCoeff,BestCoeffVval, '-append', 'newline', 'pc', 'precision',
20);
% end

MATLab code for data analysis.



Appendix 3: Analysis of 23°U photofission near the barrier (preliminary).
R. Espinoza (final results to be published in thesis)

Low energy fission can be described in terms of a highly deformed transition state nucleus with a few excitation
levels. Since most of the excitation energy goes into deforming the nucleus to a saddle-point, the nucleus can be seen
as thermodynamically " cold” at this point. From here fission can only occur through a few channels which are directly
linked to the nucleus’s quantum numbers J, K, and M. Fission fragment angular distributions offer a way to access
this information since it is directly linked by the same quantum numbers (J, K, and M) as the nucleus’s fissioning
channels.

The fission fragment angular distribution theory can be modeled by characterizing the axially symmetric transition
states at the saddle of the fissioning nucleus with the behavior of an axially symmetric top. It is assumed that the
fission fragments separate along the symmetric axis at the scission point.

A symmetric top is defined as a rigid body with two of its moments of inertia equal to each other (assuming three
total moments of inertia) as seen in Figure 1. The space fixed axis, Z, is taken as the incident beam’s direction.
J is the total angular momentum and M is J’s projection on Z. The K vector is the component of J that is along
the nuclear symmetry axis. The rotational angular momentum, R, is the vector that is perpendicular to the nuclear
symmetry axis. Both J and M are constants of motion due to conservation rules. Although K isn’t constrained to
be fixed it is assumed that when the nuclei reaches the transition state K will remain fixed and therefore a ’good’
quantum number. Up until this point, however, K isn’t constrained to be any particular value. [Put stuff about K
being good only later on in the process].

FIG. 1. A diagram for the angular momentum for a deformed nucleus.

The quantum mechanical wave equation for a symmetric top can be written as,

K2
27,

+EV =0. (1)
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Jy and J) are the moments of inertia perpendicular and parallel to the symmetry axis respectively. ®,X, and ©

are the Euler angles of the top. This wave equation has already been solved (cite) using separation of variables and
its solution is given as,
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The d‘,](: a1 (©) function is the differential wave function which is defined as (cite),
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Given some nuclear state defined by its quantum numbers J, K, M and by the space (®, ®+d®),(X, X +dX),(0,0+
dO), the probability can be written as,

|02|sin(©)dOdPAX = Wil ,,(©)sin(©)dddX dO (5)

. Vil(;lel‘e W,{ 11 (©) is the fission fragment angular probability. Integration over the cyclic coordinates (® and X) then
yields,

2J+1
Wit m(©) = 5 ity k ? )
with the condition that,
e
[ Wi a@sin(erae = 1. .
0

If it is assumed that there is only electric dipole absorption, it can be seen that there are variety of possible states
for which and atom can decay depending on its spin. To construct a full expression for the angular distribution of
fission fragments it is necessary to sum up these possible states as follows,

W, 1(0) =33 Xy x Pic x Wi (©) (8)

J M K

Since the target under study in this paper is 23U and has a spin of J=9/2 (target details in Table I), the nucleus
can decay through K:g, Z, E, g, or — with an inherent probability (P ) associated with each possible decay channel.

Including this into the definition of the full angular distribution of fission fragments we have the following:

W2PU(0) =" Wi(8) ©)
K
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The X terms are the width ratios which don’t vary in value within the different K states. X is defined as,

Ta(J,— K, E)
Ty (J,— E) + Tof(J, — K, E) + Tan(J,— K, E)

(14)
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where F;’ are fission barrier widths and T); are the fission barrier transmission coefficients.

Much of experimental data on fission fragment angular distributions has been gathered using a Bremsstrahlung
radiation photon source that bombards the target with a large spread of photon energies. Fission fragment angular
distributions have been studied with such sources and generally agree with the current theory, but this method lacks
the ability to probe into any fission barrier structure. Many techniques have been developed to try to make up for
this spread of energy, but it still has too broad of a spectrum to study the fission barrier with much precision. With
the development of nearly mono-energetic photon sources it is now possible to take data without the need for much
compensation for beam spread. The use of the narrow beam provided by HI4S allows a chance for a deeper evaluation
of what is known about the fission barriers of fissile nuclei. It is customary to assume that only 1 decay channel
contributes, however, in order to explore the photo-fission process is greater detail the effects of the other channels
where included and varied according to a Gaussian distribution,

P = —exp

[ (K - u)z] (16)

where g is the mean and o is the standard deviation. For the purposes of analyzing the experimental data, the mean

was set to p = 3 By having a Gaussian distribution we can easily vary the effect that the other K states have by

varying o.
II. EXPERIMENTAL PROCEDURE

Photofission of a 23°U target was studied for this work. The details of the target are in Table I. The High
Intensity y-ray Source (HIyS) provided a nearly mono-energetic y-ray source that can be tuned across a wide range of
energies and switched between linear and circular polarizations. HIS is a Free-Electron laser (FEL) based Compton
backscattering source that works by mixing a two-bunch electron beam in a storage beam with the high powered
FEL. With a wavelength of approximately 540 nm, the FEL beam energies where chosen to produce 179 ns pulsed
~-ray beams that ranged through 5.6-7.3 MeV (This needs to be double checked!) with a FWHM of about 3%. A
set of precision Cu attenuators and a large Nal detector were used to measure the absolute intensity. The intensity
ranged from 3 x 10¢ to 7 x 10° ~/s.

[Target[Dimensions [Mass (g)]Enrichment (%)]Main Impurity]
[P°U_[5mm x 10mm|4.620 _[93.7 [ U63%) |

TABLE I. Details of the target used for photofission



FIG. 2. The detector array in which the target was placed in the center.

Perpendicular Detectors (0, )| (55%,0°) [(90°,0°) [(1077,0°) [(125%,0°) [(142%,0°)
Parallel Detectors (0, §) (727,90°)[ (1077, 90°)| (1257, 90°)| (1427, 90°)

TABLE II. The positions of the acceptable detectors that where used in the analysis of photofission angular fission fragment
distribution.

Information about the neutrons produced from photofission was detected using a collection of 18 detectors as seen
in Figure 2. Twelve of the detectors were arranged at © = 55%,90° and 125° with the azimuthal angle, ¢, set at
¢ = 0° ¢ =907, and 180° for each value of ©. The other six detectors were placed at © = 72°,107° and 142° with
¢ = 0° and 90°. The 23°U target was placed in the center of the detector array which give an approximate flight
path to the detectors of 57 cm. The active volume, 12.7cm diameter and 5.1cm thick (Check this!), of each detector
contained BC-501A liquid scintillator.

The fission neutrons were determined using a time of flight method. Cut offs were put in place to isolate the
gamma rays produced from the fission neutrons from those produced from other processes. The neutrons produced
from non-fission processes typically are concentrated in a narrow energy band that is generally low in energy. Given
the nature of the fission process, the neutrons produced by the fission process have a broad energy spectrum that
extends out to a fairly high energy. Given this difference, it is simple to set a threshold that cuts out all of the
concentrated low energy gamma rays that represent non-fission neutrons. In the case of this experiment the threshold
was set to 1.5 MeV. More details of the data reduction and analysis that was used in this experiment can be found
in (Muellers paper).

III. ANALYSIS

The standard method of analyzing fission fragment angular distributions is to fit data using the general theoretical
model given by (cite):

W(6) = a+ b *sin?(f) + c = sin?(26) (17)

where a represents the isotropic portion, b is the level of anisotropy, and ¢ is the quadrapole component. Given the
target under study in this paper there is a negligible quadrapole contribution so it is being left out of the analysis.
According to Huizenga, for odd-mass targets with a large spin, the fission fragment angular distribution can be
calculated assuming that Ths(J, —, K, E) is much greater than T (.J, —, E) and that Txs(.J, —, K, E) values are inde-
pendent of J. In other words, the fission transmission coefficients of the rotational members of a particular band are
equal (The X ; terms are all equal). This is why the fission fragment theory can be generalized down to Eq. 17.
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0 1 2 3 4 5
1.2 — e e 1.2
] e 0=0.25 5
1] m 0=0.50 L1
1 + 0=0.75 r
] a4 0=1.00 N
0.8 = 0=2.00 o8
] + 0=3.00 [
£ o6 ] Y : °fg'gg [oe
2 AN i C
§ 04 \E\ [0
a 4 \ -» L
] L *’\\‘?\ i
0.2 o — o2
; N e
] ~ e e — L
04 - Ty Hi—- 0
02 — T T T T 0.2
0 1 2 3 4 5

FIG. 3. K-state probability distributions for varying o.

Instead of making this reduction, the X ; values were left as free parameters in order to study the affects of these
assumptions and to explore if any trends become apparent given the narrower photon energy spread possible with the
HI~S photon source.

The experimental data was fit using the theoretical angular distribution, Wff‘;’lj(e) (Eq.10-14), where the fit
parameters where the width ratios (X ;). Since the X ; terms are inherently energy dependent they should reveal any
anisotropy or structure due to variations in photon energy. Equations 10-14 are evaluated with to have the following
values:

3 3 . 31 5 5 .
Wic=1/2(0) = Pyjo {2—8 + msm?(e)] Xs/2+ [126 Yoh 20 )] X2+ [36 4851112(9)] Xo/a (18)
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33 15 19 1 5 5
Wic=s/2(0) = Py 2’[224 msm2(9):|X5/ 2 [126 ol ]X” 2 [228 021" (e)] Xorz - (20)
1 35 5
Wiczo/a(8) = Prja| 15 + goin(©)] Xoya + | 2 = (@) Xoya (21)
. 5 5 .,
W K:9/2(e) = P9/2 6 ﬁsm (©) X9/2- (22)

The probabilities, P, that where used in this analysis can be seen in Table II or Figure 3. They where calculated
using Eq. 16 where o was varied to increase the role that the other K-states had. A least squares fitting algorithm was
used to fit the experimental data to the theoretical fission fragment angular distribution. Although there was a total
of eighteen detectors that gathered data, only a few where acceptable to use in analysis since some of the detectors
proved to be problematic after the experiment was completed. Table III shows which of the detectors where used.

The range of K-state distributions was chosen after analysis of the behavior of the fit for a range of distributions
that start from having K=1/2 solely dominating and out to a point where the states all shared an appreciable weight.
Figure 14 shows this analysis out to ¢ = 5 where it becomes apparent that the error increases the as more weight
is placed on the other K-states. From this result it was then decided to limit our analysis to distributions between
having an exclusive K=1/2 dominance out to a Gaussian distribution with o = 1.



Py Only K=1/2|0 = 0.25 o = 0.50 o=0.75 o=1.0

P =[1.0 0.99967 0.88054 0.69444 0.57035
Pajs =[0.0 0.00033535  |0.11917 0.28549 0.34594
P55 =[0.0 1.26600%10~4/0.00029539  [0.019837  [0.077188
Py =00 5.3784*%107°2 |1.3411*10~% {0.00023296 |0.0063360
Py =|0.0 2.5714%107°% | 1.1151%¥10~1*|4.6238%10~7|0.00019133

TABLE III. K-state probability distributions for varying o.

IV. RESULTS

Figures 4-5 show samples of the detector data that was fit using the previously mentioned prescription. Average
x? values for the perpendicular detector data was about 18 whereas for the parallel detectors it was 251. While these
are fairly high values of x? it was mainly caused by the lack of usable data. From the 18 original detectors only 5
where used in the perpendicular detector analysis and 4 for the parallel. The fitting algorithm used to fit the data
had trouble finding the correct minimum for any given data set, so the initial conditions that where used affected the
outcome of the fit quality greatly. Given all this, however, it was seen that the relative values of the fitting parameters
(X ) didn’t deviate much under various conditions used while trying to maximize the fitting quality. This allowed
the overall features seen in the results to remain unclouded by the errors.

Figures 6-10 show the results of the fits for the various K-state distributions. A complete table of all the X ; results
can be seen in the appendix. Only the analyzed data for the perpendicular detectors are shown in the figures since
the results of the parallel detectors showed no significant change in the results, but include the increased fit quality as
previously mentioned. An analysis of the differences between the detector results are shown in Figures 11. Although
there is no statistical different between the detectors, it seems as though there is a general trend of separation between
the parallel and perpendicular detectors. Figure 12 shows this more clearly in that the perpendicular detectors have a
distinet trend of having a smaller values when compared to the parallel data. The errors involved in the parallel data
where larger, as previously discussed, and mask any conclusive statistical separation. It is likely that is the errors
where reduced some measurable anisotropy would be present.

What is clear from the data is that the Xg/5 term dominates over the other X ; terms. Xj/ is consistently negligible
in terms of its contribution whereas X~ /3 is seen to contribute only a very small fraction to the fit. Figure 13 illustrates
the role that each X; term has on the overall fit. From the figure it is apparent that term including Xg/5 seems
to fit the form of W (#) closely and with X5 /2 term looking somewhat similar. The X5/, term has the wrong slope
compared to W(#) so it isn’t surprising that the results point to the X5/, being of negligible influence.

The X; values where seen to have a negligible change over the the span of the photon energies that were used. For
each change in K-state distribution the values remained relatively unaffected. Figure 14 shows closer look at the effect
that spreading the influences that each of the K-states had on the overall X ; values. As the this distribution increased
it was apparent the the errors increased as well, but there seemed to be a general trend forming. Distributions past
o = 1 showed that the effect of X; = 9/2 increased while the other two widths started decreasing in contribution.

The results of this analysis shows that photo-fission in 23°U has a clear spin dependence. From the fission fragment
distribution theory it isn’t surprising that the Xg/o term dominated over the other terms. Since fission involves a
nucleus breaking apart due in instability, it makes sense from a classical perspective, that the term with the highest
spin would contribute the most to fission. The analysis agrees by showing the J = 9/2 fission channel with the
largest contribution and with the J = 7/2 coming in second, but only weakly contributing. The J = 5/2 channel’s
contribution to fission is seen to be as negligible. It’s interesting to note that results of this analysis show that the
contribution of the X ; remain relatively the same across the entire energy spectrum that was used. This shows that
the relative energy dependence of X ; is weak across the few MeV where data was gathered.

The largest source for the error encountered in this analysis stemmed from uncertainty in the fission neutron
measurements. These uncertainties propagated throughout the analysis and ultimately disguised some of the results.
This is, however, to be expected on some level due to the photon beam’s comparative size to the fission barrier energy
levels. In Figures 6-10 there are fairly large error bars across most of the spectrum, however, these uncertainties
aren’t large enough to discredit the distinct separation between the X ; values. These results are clear and without
any special modification of the data, as would be done if the data was gathered using a different photon source (i.e.
Bremsstrahlung).



W(0) vs 6 for 6.995MeV (Perpendicular)
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FIG. 4. A sample of the perpendicular detector data that was fit with the prescribed method given in this paper.

W(6) vs 6 for 6.995MeV (Parallel)
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FIG. 5. A sample of the parallel detector data that was fit with the prescribed method given in this paper. The results of the
parallel detectors where similar to that of the perpendicular detector data, but tended to have a higher degree of uncertainty
due to the lack of usable detectors.

The directness of this technique to probe and analyze fission barriers suggest that it would be possible to explore
the lower energy regions of the fission barrier in search of structure that isn’t accurately modeled with the current
smooth fission fragment theory. With the current analysis it’s seen that at lower energies the error increases, which
can be associated with the board beam triggering more of the competing non-fission processes and detracting from
the total fission neutron count. In order to study this region more effectively it will be necessary to either increase
the amount of time data is gathered to compensate for the overall lower fission probability or to use a narrower beam
that can access the small gaps between the energy levels. The low statistics in this region limited the exploration of
this region for this paper.

The current understanding is that the fissioning channels at the fission barrier have the same structure as those of
the non-fissioning decay channels, but are compressed as illustrated in Figure 15(cite). If this is true we’d expect that
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X vs Engery (0=0.75)
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(Modified) Detector Comparison for Xos2 (0=1.0)
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FIG. 12. The same data in Figure 13 with the error bars for some of the data removed in order to have a closer look at how the
detectors compare. The points at the following energies had their error bars removed: 5.27, 5.301, 5.318, 5.326, 5.344, 5.393,
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represents the total W () is a general case. All of the data that was analyzed had a similar shape for W (0).

when the photon energy reaches levels of the 7/2— ground state, just above the fission barrier, that the X; = 7/2
term will dominate.
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FIG. 14. An analysis of the effects of various K-state Gaussian distributions as ¢ is adjusted to increase the role the higher K-
states have in the fit. As o is increased, so that the distribution is more even across the different K-states, the error increases.
The values up to ¢ = 1 where used to sample the effects that a K-state distribution has on the angular fission fragment
distribution.



